Expand description
Rayon is a data-parallelism library that makes it easy to convert sequential computations into parallel.
It is lightweight and convenient for introducing parallelism into existing code. It guarantees data-race free executions and takes advantage of parallelism when sensible, based on work-load at runtime.
§How to use Rayon
There are two ways to use Rayon:
- High-level parallel constructs are the simplest way to use Rayon and also
typically the most efficient.
- Parallel iterators make it easy to convert a sequential iterator to
execute in parallel.
- The
ParallelIterator
trait defines general methods for all parallel iterators. - The
IndexedParallelIterator
trait adds methods for iterators that support random access.
- The
- The
par_sort
method sorts&mut [T]
slices (or vectors) in parallel. par_extend
can be used to efficiently grow collections with items produced by a parallel iterator.
- Parallel iterators make it easy to convert a sequential iterator to
execute in parallel.
- Custom tasks let you divide your work into parallel tasks yourself.
join
is used to subdivide a task into two pieces.scope
creates a scope within which you can create any number of parallel tasks.ThreadPoolBuilder
can be used to create your own thread pools or customize the global one.
§Basic usage and the Rayon prelude
First, you will need to add rayon
to your Cargo.toml
.
Next, to use parallel iterators or the other high-level methods,
you need to import several traits. Those traits are bundled into
the module rayon::prelude
. It is recommended that you import
all of these traits at once by adding use rayon::prelude::*
at
the top of each module that uses Rayon methods.
These traits give you access to the par_iter
method which provides
parallel implementations of many iterative functions such as map
,
for_each
, filter
, fold
, and more.
§Crate Layout
Rayon extends many of the types found in the standard library with
parallel iterator implementations. The modules in the rayon
crate mirror std
itself: so, e.g., the option
module in
Rayon contains parallel iterators for the Option
type, which is
found in the option
module of std
. Similarly, the
collections
module in Rayon offers parallel iterator types for
the collections
from std
. You will rarely need to access
these submodules unless you need to name iterator types
explicitly.
§Targets without threading
Rayon has limited support for targets without std
threading implementations.
See the rayon_core
documentation for more information about its global fallback.
§Other questions?
See the Rayon FAQ.
Modules§
- Parallel iterator types for arrays (
[T; N]
) - Parallel iterator types for standard collections
- Traits for writing parallel programs using an iterator-style interface
- Parallel iterator types for options
- The rayon prelude imports the various
ParallelIterator
traits. The intention is that one can includeuse rayon::prelude::*
and have easy access to the various traits and methods you will need. - Parallel iterator types for ranges, the type for values created by
a..b
expressions - Parallel iterator types for inclusive ranges, the type for values created by
a..=b
expressions - Parallel iterator types for results
- Parallel iterator types for slices
- Parallel iterator types for strings
- This module contains the parallel iterator types for owned strings (
String
). You will rarely need to interact with it directly unless you have need to name one of the iterator types. - Parallel iterator types for vectors (
Vec<T>
)
Structs§
- Provides context to a closure called by
broadcast
. - Provides the calling context to a closure called by
join_context
. - Represents a fork-join scope which can be used to spawn any number of tasks. See
scope()
for more information. - Represents a fork-join scope which can be used to spawn any number of tasks. Those spawned from the same thread are prioritized in relative FIFO order. See
scope_fifo()
for more information. - Thread builder used for customization via
ThreadPoolBuilder::spawn_handler
. - Represents a user created thread-pool.
- Error when initializing a thread pool.
- Used to create a new
ThreadPool
or to configure the global rayon thread pool.
Enums§
- Result of
yield_now()
oryield_local()
.
Functions§
- Executes
op
within every thread in the current threadpool. If this is called from a non-Rayon thread, it will execute in the global threadpool. Any attempts to usejoin
,scope
, or parallel iterators will then operate within that threadpool. When the call has completed on each thread, returns a vector containing all of their return values. - Returns the number of threads in the current registry. If this code is executing within a Rayon thread-pool, then this will be the number of threads for the thread-pool of the current thread. Otherwise, it will be the number of threads for the global thread-pool.
- If called from a Rayon worker thread, returns the index of that thread within its current pool; if not called from a Rayon thread, returns
None
. - Creates a “fork-join” scope
s
and invokes the closure with a reference tos
. This closure can then spawn asynchronous tasks intos
. Those tasks may run asynchronously with respect to the closure; they may themselves spawn additional tasks intos
. When the closure returns, it will block until all tasks that have been spawned intos
complete. - Creates a “fork-join” scope
s
with FIFO order, and invokes the closure with a reference tos
. This closure can then spawn asynchronous tasks intos
. Those tasks may run asynchronously with respect to the closure; they may themselves spawn additional tasks intos
. When the closure returns, it will block until all tasks that have been spawned intos
complete. - Takes two closures and potentially runs them in parallel. It returns a pair of the results from those closures.
- Identical to
join
, except that the closures have a parameter that provides context for the way the closure has been called, especially indicating whether they’re executing on a different thread than wherejoin_context
was called. This will occur if the second job is stolen by a different thread, or ifjoin_context
was called from outside the thread pool to begin with. - Returns the maximum number of threads that Rayon supports in a single thread-pool.
- Creates a “fork-join” scope
s
and invokes the closure with a reference tos
. This closure can then spawn asynchronous tasks intos
. Those tasks may run asynchronously with respect to the closure; they may themselves spawn additional tasks intos
. When the closure returns, it will block until all tasks that have been spawned intos
complete. - Creates a “fork-join” scope
s
with FIFO order, and invokes the closure with a reference tos
. This closure can then spawn asynchronous tasks intos
. Those tasks may run asynchronously with respect to the closure; they may themselves spawn additional tasks intos
. When the closure returns, it will block until all tasks that have been spawned intos
complete. - Puts the task into the Rayon threadpool’s job queue in the “static” or “global” scope. Just like a standard thread, this task is not tied to the current stack frame, and hence it cannot hold any references other than those with
'static
lifetime. If you want to spawn a task that references stack data, use thescope()
function to create a scope. - Spawns an asynchronous task on every thread in this thread-pool. This task will run in the implicit, global scope, which means that it may outlast the current stack frame – therefore, it cannot capture any references onto the stack (you will likely need a
move
closure). - Fires off a task into the Rayon threadpool in the “static” or “global” scope. Just like a standard thread, this task is not tied to the current stack frame, and hence it cannot hold any references other than those with
'static
lifetime. If you want to spawn a task that references stack data, use thescope_fifo()
function to create a scope. - Cooperatively yields execution to local Rayon work.
- Cooperatively yields execution to Rayon.